
Flash Lite Authoring Guidelines
for the i-mode Service by NTT DoCoMo

Trademarks

Add Life to the Web, Afterburner, Aftershock, Andromedia, Allaire, Animation PowerPack, Aria, Attain, Authorware,
Authorware Star, Backstage, Bright Tiger, Clustercats, ColdFusion, Design In Motion, Director, Dream Templates,
Dreamweaver, Drumbeat 2000, EDJE, EJIPT, Extreme 3D, Fireworks, Flash, Fontographer, FreeHand, Generator, HomeSite,
JFusion, JRun, Kawa, Know Your Site, Knowledge Objects, Knowledge Stream, Knowledge Track, LikeMinds, Lingo, Live
Effects, MacRecorder Logo and Design, Macromedia, Macromedia Action!, Macromedia Flash, Macromedia M Logo and
Design, Macromedia Spectra , Macromedia xRes Logo and Design, MacroModel, Made with Macromedia, Made with
Macromedia Logo and Design, MAGIC Logo and Design, Mediamaker, Movie Critic, Open Sesame! , Roundtrip, Roundtrip
HTML, Shockwave, Sitespring, SoundEdit, Titlemaker, UltraDev, Web Design 101, what the web can be, Xtra are either
registered trademarks or trademarks of Macromedia, Inc. and may be registered in the United States or in other jurisdictions
including internationally. Other product names, logos, designs, titles, words or phrases mentioned within this publication may be
trademarks, servicemarks, or tradenames of Macromedia, Inc. or other entities and may be registered in certain jurisdictions
including internationally.

This guide contains links to third-party Web sites that are not under the control of Macromedia, and Macromedia is not
responsible for the content on any linked site. If you access a third-party Web site mentioned in this guide, then you do so at your
own risk. Macromedia provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia
endorses or accepts any responsibility for the content on those third-party sites.

i-mode, the i-mode logo, NTT DoCoMo, and DoCoMo are trademarks or registered trademarks of NTT DoCoMo, Inc.

NTT DoCoMo and Other Third-Party Information

Apple Disclaimer

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE
ENCLOSED COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME STATES.
THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC
LEGAL RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU MAY HAVE WHICH VARY FROM STATE TO
STATE.

Copyright © 2003 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced,
translated, or converted to any electronic or machine-readable form in whole or in part without prior written approval of
Macromedia, Inc.

Acknowledgments

Director: Erick Vera

Producer: Barbara Nelson

Writing: Paul Goldman

Editing: Lisa Stanziano

Print Design and Production: Adam Barnett

First Edition: March 2003

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103

CONTENTS
CHAPTER 1: Introduction . 5

About the i-mode service by NTT DoCoMo . 5
Getting started . 5

CHAPTER 2: Developing Content . 7

Navigation and key events . 7
i-mode compatible HTML . 8
ActionScript and properties . 8
Sound . 10
Network access . 10
Screen size . 10
Movie size . 10
Performance Optimization . 11
Interactive versus Inline content . 14

CHAPTER 3: Sound . 15

Embedding sound in Flash Lite movies for i-mode phones 15
MFi sound substitution . 15

Associating an MFi sound file with an ActionScript sound symbol 16
Accessing sound on main and movie clip Timelines . 18

CHAPTER 4: Testing Content . 21

DoCoMo’s i-mode HTML Simulator . 21

APPENDIX A: Supported ActionScript . 25

APPENDIX B: Supported Properties . 37

APPENDIX C: Warning and Error Messages . 41

APPENDIX D: References . 47

Macromedia websites. 47
3

4 Contents

CHAPTER 1
Introduction

®
Macromedia has created a new profile of the Flash Player called Macromedia Flash™ Lite,
designed for consumer mobile devices, including phones for the i-mode service by NTT
DoCoMo. This format is designed to run optimally on devices with limited memory, processor
speed, and display area. Content created for Flash Lite is most similar to Flash Player 4 content.

The Macromedia Flash MX Professional 2004 User Guide for Flash Lite describes, in general, tools
and guidelines for authors creating Flash Lite movies. This document contains authoring
information specific to creating movies for i-mode phones.

About the i-mode service by NTT DoCoMo

The i-mode service by NTT DoCoMo is a mobile phone service in Japan that provides its
customers with both voice and comprehensive data services. With an i-mode phone, users can
exchange i-mode e-mail and obtain information from i-mode menu sites and i-mode compatible
Internet sites.

The i-mode phone contains a browser that displays i-mode compatible HTML web pages.
Beginning with the 505i phones, you can view Macromedia Flash Lite movies from the i-mode
browser. You can also use the phones’ My Picture and Standby Screen applications to view Flash
Lite movies. Although a number of manufacturers produce 505i phones, all of them support the
same Flash Lite functionality.

Getting started

To create Flash Lite movies for i-mode phones, you need to install Macromedia Flash MX
Professional 2004, available from the Macromedia website. (See Appendix D, “References,”
on page 47, for links to the Macromedia website.) . Read the Macromedia Flash MX Professional
2004 User Guide for Flash Lite for an overview of Flash Lite and basic authoring information.

To test your completed Flash Lite movies for i-mode phones, you should obtain the i-mode
HTML Simulator from the DoCoMo website. (See Appendix D, “References,” on page 47.) The
Simulator is an application tool that emulates the operation of an i-mode phone and allows you
to test the validity of Flash Lite movies. Though useful, the Simulator is no substitute for testing
on actual i-mode phones—only testing on actual phones will give you a true picture of your Flash
Lite movie’s performance.
5

6 Chapter 1: Introduction

CHAPTER 2
Developing Content
Starting with the 505i phones, the i-mode service by NTT DoCoMo supports the ability to view
Flash Lite movies. The same Flash Lite functionality is available on all 505i phones, regardless of
manufacturer. This chapter describes considerations for creating Flash Lite movies that run on i-
mode phones, from general functionality to performance and size constraints.

The 505i phones support Flash Lite in both English and Japanese. However, there are a few
exceptions to the standard Flash Lite specification. To review the standard specification, see the
Macromedia Flash MX Professional 2004 User Guide for Flash Lite. The exceptions to the standard
are detailed in this document.

Navigation and key events

Flash Lite for i-mode uses three keys for navigation: Up, Down, and Select. The Left and Right
keys are reserved for the i-mode browser. These three keys correspond to the Shift+Tab, Tab, and
Enter keys on the desktop versions of the Flash Player.

The keys 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, *, and # are also available. These correspond to the same keys
on the desktop versions of the Flash Player. You can attach ActionScript to these keys and the
Enter key as you would normally in Flash. ActionScript attached to other keys is ignored.

Text and fonts

Flash Lite includes support for both device and embedded fonts. You can use embedded fonts to
give you more control over the design of your movie, but doing so increases the SWF file size.
Using the device font for text limits you to a single font, but helps keep your file size small.

When using device fonts, Flash Lite limits special text formatting for dynamic text fields to
justification (left, center, right) and color. Formatting options such as superscript, subscript,
kerning, bold, and italic are not supported.

Flash Lite does not support input text fields—input text fields are not selectable and cannot be
used to enter text.
7

Emoji

i-mode phones support special pictographic characters called Emoji. The following characters are
examples of Emoji:

These are encoded by replacing characters in the standard Shift-JIS table. As long as the phone’s
font supports Emoji encoded as standard Shift-JIS characters, Flash Lite can display them.

When authoring using Flash, you first need to ensure that you have Shift-JIS fonts installed on
your desktop authoring system. You also need to select a Shift-JIS font for the text fields in which
you want to display Emoji characters.
Note: The phone’s font set controls the color and appearance of Emoji characters.

For further information about Emoji, see Appendix D, “References,” on page 47.

i-mode compatible HTML

i-mode browsers can directly run Flash Lite movies, or movies can be embedded in i-mode
compatible HTML web pages.

The i-mode compatible HTML specification is based on a subset of HTML 2.0, HTML 3.2, and
HTML 4.0 specifications that DoCoMo extended with tags and attributes for special use on
mobile phones. As an example, extensions include the tel URL protocol, which is used to link to
a phone number and let users initiate a phone call.

For information on i-mode compatible HTML, see Appendix D, “References,” on page 47.

ActionScript and properties

Flash Lite for i-mode supports most Flash 4 ActionScript commands. The following are notable
exceptions:

• Use the add operator instead of the & command to concatenate strings.
• Button mouse events such as dragOver, dragOut, and releaseOutside cannot be used to

trigger ActionScript attached to buttons. However, in addition to keypress events, the events
press, release, rollOver, and rollOut can be used to trigger ActionScript when attached
to buttons and accessed through key-based navigation.

• Draggable movie clip functions and properties (for example: startDrag, stopDrag, and
_dropTarget properties) are not supported.

• Use the eq operator to compare strings and the == operator for numeric comparison.
• URL encoding must be done manually using ActionScript. The escape() ActionScript

function is not a Flash 4 function and is not available in Flash Lite.
• The fscommand() function is not supported.
• The default Quality level for Flash Lite during playback is medium and there is no support for

bitmap smoothing.
8 Chapter 2: Developing Content

• The getURL() function can only be called once per keypress, and can only be used for the
http, mailto, https and tel protocols. Only the first getURL() call in a keypress statement
block is executed; all subsequent getURL() calls in the same block are ignored.

• A button action can be assigned to launch an e-mail composition window with the address,
subject, and body text fields already populated. There are two methods to do this. Method 1
can be used for either Shift-JIS or English character encoding, while method 2 only supports
English character encoding.
Method 1
Set variables for each of the desired parameters, for example:
on (release, keyPress "#") {

subject = "email subject";
body = "email body";
getURL("mailto:somebody@anywhere.com", "", "GET");

}

Method 2
Define each parameter within the getURL action, for example:
on (release, keyPress "#"){

getURL("mailto:somebody@anywhere.com?subject=email subject&body=email
body");

}

• Key events can only be attached to the keys 0-9, #, *, and the Enter key.
• The loadMovie(), loadVariables(), loadMovieNum(), and loadVariablesNum()

functions are not supported.
• The MaxScroll and Scroll text-scrolling properties are not supported.
• Sound functionality is limited to event sound. An event sound can only be triggered to play

when it is attached to a keypress event. Only the first event sound in a keypress statement block
is played, and all other subsequent sounds in the same block are ignored.

• There is no synchronized audio, so the _soundBuffTime property is not supported.
• The range of valid integer numbers that can be represented is -2,147,483,648 to

2,147,483,647.
• Math functions are not natively supported. In Flash Lite, the methods and properties of the

Math object are emulated using approximations and may not be as accurate as the non-
emulated math functions supported in Flash Player 5 and above.

• The following Math functions can only be used with constants, not variables: Math.acos(),
Math.asin(), Math.atan(), Math.atan2(), Math.cos(), Math.pow(), and Math.tan().

• The _url property is not supported.
• The Number() and String() functions are not supported.

Note: Flash 4 ActionScript does not support arrays. However, they can be emulated using the
eval() function. For more information, see Macromedia TechNote 14219, “How to use Eval to
emulate an array,” at www.macromedia.com/go/flash_support (English) or
www.macromedia.com/go/flash_support_jp (Japanese).

ActionScript commands that are not recognized are ignored. For a detailed listing of supported
ActionScript and properties, see Appendix A: “Supported ActionScript” on page 25 and
Appendix B: “Supported Properties” on page 37.
ActionScript and properties 9

Sound

Flash Lite for 505i phones does not support the standard Flash Player audio formats—Raw,
ADPCM or MP3. Instead, only MFi (Melody Format for i-mode) is supported. In addition, each
manufacturer’s 505i phone supports the standard MFi format, plus its own proprietary
extensions.

Flash Lite does not support streaming sound, sound mixing, or looping of sound. Only event
sound is supported and only one sound can be played at a time.

For detailed information about embedding sound into Flash Lite movies for i-mode phones, see
Chapter 3, “Sound,” on page 15.

Network access

The Flash Lite specification for i-mode supports the getURL() function in a restricted manner.
The getURL() function is ignored unless the user first presses one of the following keys: 0-9, *, #,
or the Select key. Only the first getURL() call in a keypress statement block is executed; all
subsequent getURL() calls in the same block are ignored.

The getURL() function can be used to load another SWF or HTML page (http), a secured (SSL-
Secure Sockets Layer) HTTP page (https), send e-mail (mailto), or dial a phone number (tel).

Screen size

The i-mode phone screen size is one of the most important factors to keep in mind when
developing Flash Lite movies for i-mode phones. Generally, content looks better scaling up, rather
than scaling down, so it is best to create content for the smallest screen area. The screen area
available to Flash Lite varies from phone model to phone model, and across the applications
featuring Flash Lite. In order for a Flash Lite movie to look the best in the browser on all 505i
phones, a resolution of 240x240 is recommended. The screen area available to Flash Lite in the
My Picture and Standby Screen applications varies depending on the specific 505i phone.

Detailed information on the screen area available to Flash Lite on i-mode phones is available on
the DoCoMo website. (See Appendix D, “References,” on page 47).

Movie size

There are limitations on file size and run-time memory usage for Flash Lite movies running on i-
mode phones. There is a prescribed limit on how large a web page can be, whether it includes
Flash Lite movies or not. For 505i phones, this limit is 20KB. Full details can be found at the
DoCoMo website (see Appendix D, “References,” on page 47). This limit applies to an i-mode
page’s HTML, SWF content, and all graphic images combined. Web pages larger than this limit
cannot be downloaded to an i-mode phone and no error message appears. This limitation also
applies to Flash Lite movies played directly in the browser without being embedded in an i-mode
compatible HTML file.

The run-time memory available to Flash Lite movies running on i-mode phones is limited and
may vary from model to model. Generally, for the 505i phones, this limit is not less than
200KB. Because Flash MX Professional 2004 does not provide a mechanism for checking a
phone’s run-time memory consumption, Macromedia strongly recommends that you test all
content on actual i-mode phones.
10 Chapter 2: Developing Content

Performance Optimization

CPU speed in i-mode phones varies from model to model, and is typically much slower than
current desktop computers. Therefore, it is extremely important to consider movie performance
and optimization from the beginning of each project. The optimization recommendations for
creating any Flash movie also apply to Flash Lite movies created for i-mode phones. For the latter,
their importance is amplified.
Note: In Flash MX Professional 2004, you can find tips on optimizing Flash movies—select Help >
Using Flash -> Search and enter optimizing movies in the keyword search text box.

If you follow some simple guidelines, as described in this document, to author your movies, you
can create rich and compelling content despite CPU limitations.

Sound

Since Flash MX Professional 2004 does not natively support MFi, you must temporarily
substitute a proxy sound in a recognized format such as MP3. Details and procedures on sound
substitution for i-mode phones and Flash Lite are presented in Chapter 3, “Sound,” on page 15.

Animation

When creating animated content for an i-mode phone, it is important to keep in mind the
phone’s CPU limitations. The following guidelines can help prevent your movie from
running slowly:

• If you need to provide intense or complex animation, experiment with changing the quality
setting of the movie. The default quality setting is Medium.
To change the quality setting in Flash MX Professional 2004, select File > Publish Settings,
then select the HTML tab. Select a quality setting from the Quality pop-up menu.
Because changing the quality setting may noticeably affect the visual quality of the movie, be
sure to thoroughly test the movie.

• Limit the number of simultaneous tweens.
• Alpha effects on symbols are very CPU intensive and should be used sparingly. In particular, it

is generally not a good idea to tween symbols that have alpha levels that are not fully opaque
(less than 100%).

• Avoid intensive visual effects. These include large masks, extensive motion, alpha blending,
extensive gradients, and complex vectors.

• Although animating with ActionScript may produce more desirable results, in general, you
should avoid unnecessary use of ActionScript.

• Experiment with combinations of tweens, key frame animations, and ActionScript-driven
movement to produce the most efficient results.

• Test animations frequently on your target phones whenever possible.
Performance Optimization 11

Using bitmaps

Although some i-mode phones may have more than 16 bits of color resolution, Macromedia
recommends optimizing bitmaps to 16 bits before importing them into Flash MX Professional
2004. Doing so reduces Flash Lite movie size and gives you more control over the final output.
Also, make sure that bitmaps are imported at the size they need to be in the Flash Lite movie.
Using larger than required bitmaps results in higher run-time memory requirements.

Bitmaps versus vectors

Flash Lite generally uses vectors to define content, which can tax a phone’s CPU when rendering
complex graphics and animations. In general, the more vectors that are manipulated on the stage,
the more CPU power is required. This is also true for Flash movies delivered on desktop
machines. However, i-mode phones are far less powerful than desktop machines and more care
should be taken to avoid taxing the CPU.

When creating content for i-mode phones, it is sometimes better to use bitmaps instead of vectors
because they require less CPU power to animate. For example, a road map of a large city would
have too many complex shapes to scroll and animate well on an i-mode phone if it were created as
a vector graphic; a bitmap would work much better.

Using bitmaps produces larger files, so take care during development to find the right balance of
CPU versus file size and run-time memory requirements. Because of mobile phones’ smaller
screens, slower data transmission speeds, limited memory and CPU speeds, developers should
take extra care in planning and testing.

If you are using bitmaps, you can set image compression options that will reduce your SWF
file size.

To set bitmap image compression:

1 Select a bitmap in the Library window.
2 Right-click (Windows) or Control-click (Macintosh) the bitmap’s icon in the Library window.
3 Choose Properties from the options menu. The Bitmap Properties dialog box appears:

■ Select Photo (JPEG) in the Compression pop-up menu for images with complex color or
tonal variations, such as photographs or images with gradient fills. This option produces a
JPEG format file.
12 Chapter 2: Developing Content

Select the Use Imported JPEG Data checkbox to use the default compression quality specified
for the imported image. To specify a new quality compression setting, deselect Use Imported
JPEG Data and enter a value between 1 and 100 in the Quality text box. A higher setting
produces a higher image quality, but also a larger file size, so adjust the value accordingly.
■ Select Lossless (PNG/GIF) in the Compression pop-up menu to compress the image with

lossless compression, in which no data is discarded from the image. Use lossless compression
for images with simple shapes and relatively few colors. Save the bitmap as a PNG file.

4 Click Test to determine the results of the file compression. Compare the original file size to the
compressed file size to determine if the selected compression setting is acceptable.

You can also globally adjust the compression settings for JPEG files.

To globally control bitmap compression for JPEG files:

1 Select File > Publish Settings, then select the Flash tab. The Publish Settings dialog box with
the Flash tab options appears:

2 Adjust the JPEG Quality slider or enter a value.
A higher JPEG quality value results in a higher image quality. As with the compression settings
previously described, lower image quality produces a smaller SWF file; higher image quality
produces a larger SWF file. Try different settings to determine the best trade-off between size
and quality.

Vector graphics

Whenever possible do not use borders in your vector graphics; this will greatly diminish the
number of rendered lines.
Performance Optimization 13

Using ActionScript

Because of CPU limitations, you should adhere to the following general guidelines when
developing ActionScript for Flash Lite movies deployed on i-mode phones:

• Keep the ActionScript as simple as possible.
• Limit the number of loops that you use and the amount of code that each loop contains.
• Stop frame-based looping as soon as it is no longer needed.
• Avoid string and emulated array processing—it can be extremely CPU intensive.

Note: Flash 4 ActionScript does not support arrays. However, they can be emulated using the
eval() function. For more information, see Macromedia TechNote 14219, “How to use Eval to
emulate an array,” at www.macromedia.com/go/flash_support.

Interactive versus Inline content

Flash Lite movies can be viewed in the i-mode browser in one of two modes: Interactive or Inline.
The browser determines the mode used.

In Interactive mode, the user can view and interact with the Flash Lite movie. Generally, this
occurs when a Flash Lite movie is loaded directly into the browser without being embedded in
an i-mode compatible HTML web page or mixed with any other type of content. The browser
then sends all supported key events to Flash Lite, allowing content to access the network and
play sound.

If the movie’s display area is not the same as the browser’s display area, the browser re-sizes the
movie to fit the browser’s display area. No horizontal or vertical scrolling is required or possible.
The movie’s aspect ratio does not change.

Inline mode occurs when a Flash Lite movie is embedded in an i-mode compatible HTML page
that contains another Flash Lite movie or other HTML controls and objects. The browser does
not send any key events to Flash Lite, eliminating the possibility of interactivity. Because the
getURL() function and event sound is only triggered by keypress events, Inline Flash movies
cannot access the network or play sound.

For Inline mode, the movie’s display size can be larger than the browser’s display area. The movie
is scaled so the movie’s width does not exceed the browser’s width. However, the movie’s height
may end up being larger than the browser’s height, in which case the entire browser page can be
scrolled vertically.
14 Chapter 2: Developing Content

CHAPTER 3
Sound
Embedding sound in Flash Lite movies for i-mode phones

The Macromedia Flash MX Professional 2004 User Guide for Flash Lite describes the general
process and tools required to embed sound in Flash Lite movies running on a phone. This chapter
contains additional information, including procedures, specific to embedding sound in Flash Lite
movies for 505i phones.

Flash Lite content for 505i phones supports only the Melody Format for i-mode (MFi) audio
format. Each manufacturer’s 505i phone supports the standard MFi format, plus its own
proprietary extensions.

MFi sound substitution

Flash Lite does not support standard Flash Player audio formats—Raw, ADPCM, or MP3. For
505i phones, only the MFi (Melody Format for i-mode) audio format is supported. Since Flash
MX Professional 2004 does not natively support MFi, you must temporarily substitute a proxy
sound in a recognized format such as MP3. You can use options in the Sound Properties dialog
box and the Flash Publish Settings dialog box to link the proxy sound file to an MFi sound file.

Review the Macromedia Flash MX Professional 2004 User Guide for Flash Lite to understand the
basics of sound substitution. The examples and tutorials in the user guide use MIDI (Musical
Instrument Digital Interface) sound files, but the same principles apply for MFi files.

The following procedure is specific to i-mode phones.
15

Associating an MFi sound file with an ActionScript sound symbol

This procedure illustrates a simple case of associating an MFi sound file with an ActionScript
sound symbol so the Flash MX Professional 2004 test movie player can recognize and play it.

To associate an MFi file with an ActionScript symbol:

1 In your sound authoring program, create an MFi sound file and save it as MySound.mld.
2 In Flash MX Professional 2004, create a new file and name it FlashLiteSound.fla. Save it in the

same directory as MySound.mld.
3 Select File > Publish Settings > Flash tab. The Publish Settings dialog box appears:

■ In the Version pop-up list, select Flash Lite 1.0.
■ Click OK.

4 Select Window > Other Panels > Common Libraries > Buttons. Select a button and drag it to
the Stage.

5 Double-click the new button. The Timeline should change to edit the button and display
frames named Up, Over, Down, and Hit.

6 Select Insert > Timeline > Layer to create a new layer. Select Modify > Timeline > Layer
Properties and change the name of the layer to Sound.

7 Select the Down frame in the Sound layer and insert a keyframe.
8 Select a sound from the Sounds library window and drag it to the keyframe.
16 Chapter 3: Sound

9 Associate the sound with the MySound.mld file by doing the following:
■ Select Window > Library and find the sound that you added earlier. Select the sound and

right-click it to open the context menu. Select Properties from the context menu. The
Sound Properties dialog box appears:

■ For the Device sound option, use the file browser to find and select MySound.mld.
■ Click OK.

10 Select Control > Test Movie to start the Flash Lite 1.0 test movie player.
11 Click in the test movie player window. Since Flash Lite ignores the mouse, press the Tab key

until the focus is on the button. (You may need to select Control -> Disable Keyboard Shortcuts
before you can navigate with the Tab key.) Press Enter. You should hear the sound from the
MFi file you created in step 1.

12 To playback Flash movies that contain sound data in MFi, use Flash Lite 1.0 test movie or the
Standalone Flash Lite Player (SAFlashLite).
MFi sound substitution 17

Accessing sound on main and movie clip Timelines

Sounds do not necessarily need to reside on a button Timeline. In fact, there may be times when
it is useful to access sound that resides on either the main Timeline or a movie clip Timeline. As
described earlier, to successfully playback any sound it must be attached to a button, but with this
method the frame on the main or movie clip Timeline that contains the sound symbol must be
called using the gotoAndPlay action within the keyPress event statement.

This procedure illustrates a simple case of associating an MFi sound file with an ActionScript
sound symbol on the main or movie clip Timeline so the Flash Lite test movie player can
recognize and play it.

To associate an MFi file with an ActionScript symbol on a main or movie clip Timeline:

1 In your sound authoring program, create an MFi sound file and save it as MySound.mld.
2 In Flash MX Professional 2004, create a new file and name it FlashLiteSound.fla. Save it in the

same directory as MySound.mld.
3 Select File > Publish Settings > Flash tab.

■ In the Version pop-up menu, select Flash Lite 1.0 and click OK.
■ Click OK.

4 Select Window > Other Panels > Common Libraries > Buttons. Select a button and drag it to
the Stage.

5 Select Insert > Timeline > Layer to create a new layer on the main Timeline. Select Modify >
Timeline > Layer Properties and change the name of the layer to Sound.

6 Click on the new Sound layer in the main Timeline and select Insert > Keyframe to add a new
Keyframe to the Sound layer.

7 Select Window > Other Panels > Common Libraries > Sounds to open the Sounds Library
window.

8 Select Window > Library to open the current document’s Library window.
9 Select a sound in the Sounds Library window and drag it to the document Library window.
10 Associate the sound with the second keyframe in the Sound layer:

■ Select the sound from the Sound pop-up menu in the Properties inspector. (Select Windows
> Properties to display the Properties inspector if it is not already visible.)
Note: The sound may not appear immediately in the pop-up menu. You may have to select
another frame and then reselect the Down frame to get the sound to appear in the pop-up
menu.
18 Chapter 3: Sound

11 Link the sound with MySound.mld:
If the Library window is not already open, select Window > Library and find the sound that
you added earlier. Select the sound and right-click it to open the context menu. Select
Properties from the context menu. The Sound Properties dialog box appears:

■ For the Device sound option, use the file browser to find and select MySound.mld.
■ Click OK.

12 Select Insert > Timeline > Layer to create a new layer on the main Timeline. Select Modify >
Timeline > Layer properties and change the name of the layer to Actions.

13 Select Insert > Timeline > Keyframe to add a new Keyframe to the new Actions layer.
14 Click on the first Keyframe on the Actions layer and in the Actions window enter the following

script:
stop();

Note: If the Actions window is not already open you will need to select Window > Development
Panels > Actions

15 Click on the button you added to the stage and in the Actions window add the following script:
on(keyPress “1”){

gotoAndPlay(2);
}

16 Insert a Keyframe in the Actions layer where you would like the sound to stop playing. For
example: 200. Select this Keyframe and in the Actions window add the following script:
stop();
stopAllSounds();

17 Select Control > Test Movie to start the test movie player.
18 Click in the test movie player window and press the “1” key. (You may need to select Control

> Disable Keyboard Shortcuts before you can execute keyPress actions.) You should hear the
sound from the MFi file you created in step 1.
MFi sound substitution 19

Note: You can also access sound that resides in movie clip Timelines in much the same manner
except you will need to use the tellTarget action in coordination with the gotoAndPlay() action.
Here is an example of a script which targets a sound in a movie clip Timeline:

On(keyPress “1”){
TellTarget(“myMovieClip”){

GotoAndPlay(2);
}

}

20 Chapter 3: Sound

CHAPTER 4
Testing Content
Test your Flash Lite movies frequently on actual 505i phones. This advice may sound obvious,
but this step is often overlooked and is especially important for developing Flash Lite movies for i-
mode phones. No matter how much phone emulation a developer does, the final delivery remains
the most important step in the development cycle. Emulation is helpful for much of the testing,
but it is no substitute for testing on actual 505i phones.

For basic information on how to use Flash MX Professional 2004 to author and preview Flash
Lite movies created for playing on phones, please refer to the Macromedia Flash MX Professional
2004 User Guide for Flash Lite .

You should use the following to test your Flash Lite movie for i-mode phones:

• The test movie Flash Lite Player (invoked during the Test Movie process)
• The stand-alone Flash Lite simulator
• The i-mode HTML Simulator from DoCoMo
• Flash Lite on the manufacturer’s i-mode phone

The Macromedia Flash MX Professional 2004 test movie player recognizes and plays FlashLite
movies. When you select Control > Test Movie or Control > Test Scene, new information,
warning, and error messages specifically related to Flash Lite movies are displayed in a separate
Output window.

Whenever an unknown tag is encountered, warning messages are displayed so that the author can
modify the content appropriately. Not all invalid Flash content is flagged as being in error, such as
invalid ActionScript and key input.

For a detailed explanation of all messages related to Flash Lite, see Appendix C, “Warning and
Error Messages” on page 41. This appendix lists all of the warning and error messages that you
might see when creating Flash Lite movies for i-mode phones.

DoCoMo’s i-mode HTML Simulator

DoCoMo provides an i-mode HTML Simulator for testing Flash Lite movies on the desktop.
The i-mode HTML Simulator is available from the DoCoMo website (see Appendix D,
“References,” on page 47).
Note: There is no i-mode HTML Simulator application for the Macintosh.
21

To use the i-mode HTML Simulator:

1 Download and install the i-mode HTML Simulator application from the DoCoMo website (for
a link to the website, see Appendix D, “References,” on page 47). Follow the online
instructions. Note the folder where the program files are installed.

2 Start the i-mode HTML Simulator application. In Windows Explorer, or another program
displaying filenames or icons, go to the folder where the Simulator program files are installed
(noted in step 1) and double-click CSim.exe. The i-mode HTML Simulator application
window appears:

You can click the Simulator keys with your mouse and the keys will operate in the same way as
they would on an actual i-mode phone. The Select key is the key with a circle icon, surrounded
by the arrow keys, immediately under the screen display.
At the same time as the Simulator application window appears, a Log output window also
appears:

The Log window records your interactions with the Simulator and displays information,
warning, and error messages regarding your tested files. Choose Function > Display in the
Simulator application to open or close the Log window.
22 Chapter 4: Testing Content

3 Review the i-mode HTML Simulator functions:
■ Click Function at the top of the Simulator application window. The following pop-up

menu appears:

The following function menu options for testing your Flash Lite movies are available:

Open URL Enables you to type in the URL of the file you want the Simulator to test. You
can also browse for a file on your local computer or use a bookmark. (A
bookmark is a shortcut for a file URL or pathname.)

Reload Retest and reload the file you previously opened using the Open URL menu
option.

Display Log Show or hide the Log window.

Register BookMark Save the location of the currently opened file and give it a shortcut name so
you can readily load the file again at a later time using Open URL.

Edit BookMark Edit the location and shortcut name of a bookmark.

View HTML View the i-mode compatible HTML of your currently loaded test file.

Edit HTML Edit the i-mode compatible HTML of your currently loaded test file in Notepad
or another text editor.

Image Copy to the clipboard or print the current screen display.

Setup Set the i-mode compatible HTML version you want your test file to be verified
against.

Screen Size Setup Specify the width and height of your screen display area and set the display
font size.

FLASH setup Set the run-time memory available to Flash Lite movies running in the i-mode
HTML simulator.

Exit Exit from the Simulator application.
DoCoMo’s i-mode HTML Simulator 23

24 Chapter 4: Testing Content

APPENDIX A
Supported ActionScript
This appendix lists the Flash Lite ActionScript commands and any exceptions to the standard in
Flash Lite for i-mode.

Action Name Description Support

// (comment) Comment; indicates the beginning of a script comment.
Any characters that appear between the comment
delimiter // and the end-of-line character are interpreted
as a comment.

Fully supported

, (comma) Operator; a separator between two expressions that
causes the value of the second expression to be the
return value.

Fully supported

. (dot) Operator; used to navigate movie clip hierarchies in order
to access nested (child) movie clips, variables, or
properties.

Fully supported

“ “ (string delimiter) String delimiter; when used before and after characters,
quotes indicate that the characters have a literal value
and are considered a string-not a variable, numerical
value, or other ActionScript element.

Fully supported

– – (decrement) Operator; a pre-decrement and post-decrement unary
operator that subtracts one(1) from an expression.

Fully supported

++ (increment) Operator; a pre-increment and post-increment unary
operator that adds 1 to an expression.

Fully supported

+ (add) A numeric operator used for adding numbers. Fully supported

+= (addition
assignment)

Operator (arithmetic); assigns to expression1 the value of
expression1 + expression2
For example, the following two statements have the
same result:
x += y;
x = x + y;

Fully supported
25

(–) subtract Operator (arithmetic); used for negating or subtracting.
When used for negating, it reverses the sign of the
numerical expression. When used for subtracting, it
performs an arithmetic subtraction on two numerical
expressions, subtracting expression2 from expression1.

Example 1: The following statement reverses the sign of
the expression 2 + 3.
-(2 + 3)
The result is -5.
Example 2: The following statement subtracts the integer
2 from the integer 5.
5 - 2
The result is 3.

Fully supported

-= (subtraction
assignment)

Operator (arithmetic); assigns to expression1 the value of
expression1 - expression2

For example, the following two statements have the
same result:
x -= y;
x = x - y;

Fully supported

* (multiply) Operator (arithmetic); multiplies two numerical
expressions.

Fully supported

*= (multiplication
assignment)

Operator (arithmetic); assigns to expression1 the value of
expression1 * expression2

For example, the following two expressions are the same:
x *= y;
x = x * y;

Fully supported

/ (divide) Operator (arithmetic); divides expression1 by
expression2.

For example, the following statement sets the value of x
to 25:
y = 50;
x = y/2;

Fully supported

/= (division
assignment)

Operator (arithmetic); assigns to expression1 the value of
expression1 / expression2

For example, the following two statements are the same:
x /= y;
x = x / y;

Fully supported

= (numeric equality) A numeric equality operator used to test two expressions
for equality. The result is true if the expressions are equal.

Fully supported

Action Name Description Support
26 Appendix A: Supported ActionScript

< (less than) Operator (comparison); compares two expressions and
determines whether expression1 is less than expression2
(true), or whether expression1 is greater than or equal to
expression2 (false). In Flash Lite (and Flash 4), < is a
numeric operator and is only used for expressions and
not strings.

The following examples illustrate true and false returns
for < comparisons.
3 < 10;
// true

10 < 3;
// false

Fully supported

<= (less than or equal
to)

Operator (comparison); compares two expressions and
determines whether expression1 is less than or equal to
expression2 (true), or whether expression1 is greater than
expression2 (false).

The following examples illustrate true and false results for
<= comparisons:
5 <= 10;
// true

2 <= 2;
// true

10 <= 3;
// false

Fully supported

> (greater than) Operator (comparison); compares two expressions and
determines whether expression1 is greater than
expression2 (true), or whether expression1 is less than or
equal to expression2 (false).

The following examples illustrate true and false returns
for > comparisons.
10 > 3;
// true

3 > 10;
// false

Fully supported

Action Name Description Support
27

>= (greater than or
equal to)

Operator (comparison); compares two expressions and
determines whether expression1 is greater than or equal
to expression2 (true), or whether expression1 is less than
expression2 (false).

The following examples illustrate true and false results for
>= comparisons:
10 >= 5;
// true

2 >= 2;
// true

3 >=10;
// false

Fully supported

<> (inequality) Operator (equality); tests the opposite of the equality
operator. If expression1 is equal to expression2, the result
is false.
The following examples illustrate true and false returns
for the <> operator.
3 < > 10;
// true

3 <> 3;
// false

Fully supported

% (modulo) Operator; calculates the remainder of expression1
divided by expression2.

For example, the following statement sets the value of x
to 3:
x = 45 % 6;

Fully supported

%= (modulo
assignment)

Operator (assignment); assigns to expression1 the value
of expression1 % expression2.

For example, the following two expressions are the same:
x %= y
x = x % y

Fully supported

Action Name Description Support
28 Appendix A: Supported ActionScript

|| (logical OR) Operator (logical); evaluates expression1 and, if
expression1 is false, evaluates expression2. The result is
(true) if either or both expressions evaluate to true; the
result is (false) only if both expressions evaluate to false.

The following example uses the || operator in an if
statement. The second expression evaluates to true so
the final result is true:
x = 10;
y = 250;
if (x > 25 || y > 200) {
z = 5;
}
else {
z=0;
}
// z has a value of 5 after the code above has executed

Fully supported

! (logical not) Operator (logical); inverts the Boolean value of a variable
or expression.

Fully supported

&& (logical AND) Operator (logical); evaluates expression1 and, if
expression1 is true, evaluates expression2. The result is
(true) if both expressions evaluate to true; the result is
(false) if either expression evaluates to false.

The following example uses the && operator in an if
statement. Both expressions evaluate to true, so the final
result is true:
x = 30;
y = 250;
if (x > 25 && y > 200) {
z = 5;
}
else {
z = 0;
}
// z has a value of 5 after the code above has executed

Fully supported

?: (conditional) Operator (conditional); evaluates expression1, and
returns the value of expression2 if expression1 is true;
otherwise, returns the value of expression3.

The following statement assigns the value of variable x to
variable z because expression1 evaluates to true:
x = 5;
y = 10;
z = (x < 6) ? x : y;
// z has a value of 5

Fully supported

Action Name Description Support
29

& (string
concatenation)

Operator; used for concatenating strings. Fully supported

add Operator; concatenates (combines) two or more strings. Fully supported

and Operator; performs a logical AND operation. If both
expressions evaluate to true, then the entire expression is
true.

Fully supported

break Action; appears within a loop (for, for...in, do...while or
while). The break action skips the rest of the loop body,
stopping the looping action, and executes the statement
following the loop statement. Use the break action to
break out of a series of nested loops.

Fully supported

call Action; switches the context from the current script to the
script attached to the frame being called.

Fully supported

case Keyword; defines a condition for the switch action. Fully supported

chr() String function; converts ASCII code numbers to
characters.

Fully supported

continue Action; used to control code execution in loops. Fully supported

do... while Action; executes the statements inside the loop, and then
evaluates the condition of the loop for as long as the
condition is true.

Fully supported

duplicateMovieClip Action; creates an instance of a movie clip while the
movie is playing.

Fully supported

else Action; specifies the actions, clauses, arguments, or
other conditional to run if the initial if statement returns
false.

Fully supported

else if Action; evaluates a condition and specifies the
statements to run if the condition in the initial if statement
returns false.

Fully supported

eq (string equal) Comparison operator; compares two expressions for
equality and returns true if expression1 is equal to
expression2; otherwise, returns false. This action is string
specific.

The following examples illustrate true and false results for
the eq operator:
x =”Amy”;
y=”Fred”;
x eq “Amy”;
// true
x eq y;
// false

Fully supported

eval() Function; accesses variables - the value of the variable is
returned.

Fully supported

Action Name Description Support
30 Appendix A: Supported ActionScript

fscommand() Action; allows the Flash movie to communicate with the
program hosting Flash Lite.

Not supported

ge (string greater than
or equal)

Comparison operator; returns true if the string
representation for expression1 is greater than or equal to
the string representation for expression2; otherwise,
returns false. This action is string specific.

The following examples illustrate true and false results for
the ge operator:
x =”Amy”;
y=”Fred”;
x ge y;
// false
x ge “Amy”;
// true
y ge x;
// true

Fully supported

getProperty() Function; returns the value of the specified property for
the movie clip instance.

Partially
supported. Not all
properties are
supported - see
Appendix B,
“Supported
Properties,”
on page 37.

getTimer() Function; returns the number of milliseconds that have
elapsed since the movie started playing.

Fully supported

getURL() Action; loads a document from a specific URL into a
window or passes variables to another application at a
defined URL. When sending variables, specify whether
to load variables using a GET or POST method. GET
appends the variables to the end of the URL, and is used
for small numbers of variables. POST sends the variables
in a separate HTTP header and is used for long strings of
variables.

Partially
supported. The
URL protocols
http, https, mailto,
and tel are
supported, once
per event action.

gotoAndPlay() Action; sends the playhead to the specified frame in a
scene and plays from that frame. If a scene is not
specified, the playhead goes to the specified frame in the
current scene.

Fully supported

gotoAndStop() Action; sends the playhead to the specified frame in a
scene and stops it. If no scene is specified, the playhead
is sent to the frame in the current scene.

Fully supported

gt (string greater than) Comparison operator; returns true if the string
representation for expression1 is greater than the string
representation for expression2; otherwise, returns false.
This action is string specific.

Fully supported

Action Name Description Support
31

if Action; evaluates a condition to determine the next
action in a movie. If the condition is true, Flash runs the
statements that follow.

Fully supported

ifFrameLoaded() Action; checks whether the contents of a specific frame
are available locally. Use ifFrameLoaded to start playing
a simple animation while the rest of the movie downloads

Fully supported

int() Function; converts a decimal number to the closest
integer value.

Fully supported

le (string less than or
equal)

Comparison operator; returns true if the string
representation for expression1 is less than or equal to the
string representation for expression2; otherwise, returns
false. This action is string specific.

The following examples illustrate true and false results for
the le operator:
x =”Amy”;
y=”Fred”;
y le x;
// false
x le “Amy”;
// true
x le y;
// true

Fully supported

length() String function; returns the length of the specified string
or variable name.

Fully supported

loadMovie() Action; plays additional movies without closing Flash
Lite. Normally, Flash Lite displays a single Flash movie
(SWF file) and then closes. The loadMovie() action lets
you display several movies at once or switch between
movies without loading another HTML document.

Not supported

loadMovieNum() Action; loads a SWF into a level in Flash Lite while the
originally loaded movie is playing.

Not supported

loadVariables() Action; reads data from an external file, such as a text file
or text generated by a CGI script, Active Server Pages
(ASP), or Personal Home Page (PHP), and sets the
values for variables in a movie or movie clip.

Not supported

loadVariablesNum() Action; reads data from an external file, such as a text file
or text generated by a CGI script, Active Server Pages
(ASP), or PHP, or Perl script, and sets the values for
variables in a Flash Lite level.

Not supported

Action Name Description Support
32 Appendix A: Supported ActionScript

lt(string less than) Operator (comparison); compares expression1 to
expression2 and returns true if expression1 is less than or
equal to expression2; otherwise, returns false. This action
is string specific.

The following examples illustrate true and false results for
the lt operator:
x =”Amy”;
y=”Fred”;
y lt x;
// false
x lt “Jane”;
// true

Fully supported

mbchr() String function; converts an ASCII code number to a
multibyte character.

Fully supported

mblength() String function; returns the length of the multibyte
character string.

Fully supported

mbord() String function; converts the specified character to a
multibyte number.

Fully supported

mbsubstring() String function; extracts a new multibyte character string
from a multibyte character string.

Fully supported

ne (string not-equal) Comparison operator; compares two expressions for
inequality and returns true if expression1 is not equal to
expression2; otherwise, returns false. This action is string
specific.

The following examples illustrate true and false results for
the ne operator:
x =”Amy”;
y=”Fred”;
y ne“Amy”;
// true
x ne “Amy”;
// false

Fully supported

nextFrame() Action; sends the playhead to the next frame and stops it. Fully supported

nextScene() Action; sends the playhead to frame 1 of the next scene
and stops it.

Fully supported

Number() Function; converts the argument x to a number and
returns a value as follows:
If x is a number, the return value is x.
If x is a Boolean, the return value is 1 if x is true, 0 if x is
false.
If x is a string, the function attempts to parse x as a
decimal number with an
optional trailing exponent, that is, 1.57505e-3.
If x is undefined, the return value is 0.

Not supported

Action Name Description Support
33

on(event) Handler; specifies the mouse event, or keypress that
trigger an action.

Partially
supported.
Events supported
are keyPress,
press, release,
rollOver and
rollout. Keys
supported in
Flash Lite for i-
mode are: 0-9, *,
and Select.

ord() String function; converts characters to ASCII code
numbers.

Fully supported

play() Action; moves the playhead forward in the Timeline. Fully supported

prevFrame() Action; sends the playhead to the previous frame and
stops it.

Fully supported

prevScene() Action; sends the playhead to frame 1 of the previous
scene and stops it.

Fully supported

random() Function; returns a random integer between 0 and the
integer specified in the value argument.

Fully supported

removeMovieClip() Action; deletes a movie clip instance that was created
with the duplicateMovieClip action.

Fully supported

set() Action; assigns a value to a variable. A variable is a
container that holds information.

Fully supported

setProperty() Action; changes the property of a movie clip as the movie
plays.

Partially
supported. Not all
properties are
supported – see
Appendix B,
“Supported
Properties,”
on page 37

startDrag() Action; makes the target movie clip draggable while the
movie is playing. Only one movie clip can be dragged at a
time.

Not supported

stop() Action; stops the movie that is currently playing. Fully supported

stopAllSounds() Action; stops all sounds currently playing in a movie
without stopping the playhead.

Fully supported

stopDrag() Action; stops the current drag operation. Not supported

Action Name Description Support
34 Appendix A: Supported ActionScript

String() Function; returns a string representation of the specified
argument as follows:
If x is Boolean, the return string is true or false.
If x is a number, the return string is a decimal
representation of the number.
If x is a string, the return string is x.
If x is a movie clip, the return value is the target path of the
movie clip in slash (/) notation.
If x is undefined, the return value is an empty string.

Not supported

substring() String function; extracts part of a string. Fully supported

switch() Action; creates a branching structure for ActionScript
statements. The switch action tests a condition and
executes statements if the condition returns a value of
true.

Fully supported

tellTarget() Action; Can be used to apply instructions to a particular
Timeline or movie clip. For example, tellTarget can be
assigned to buttons that stop or start movie clips on the
Stage or prompt movie clips to jump to a particular frame.

Fully supported

toggleHighQuality() Action; turns anti-aliasing on and off in Flash Lite.
Antialiasing smooths the edges of objects but results in
slower movie playback. The toggleHighQuality action
affects all movies in Flash Lite.

Fully supported

trace() Action; evaluates the expression and displays the results
in the Output window in test movie mode.

Fully supported

unloadMovie() Action; removes a movie from Flash Lite that was
previously loaded or created using the loadMovie or
duplicateMovieClip actions.

Fully supported

unloadMovieNum() Action; removes a movie at a specified level from Flash
Lite that was previously loaded or created using the
loadMovie action.

Fully supported

while() Action; runs a statement or series of statements
repeatedly in a loop as long as the condition argument is
true.

Fully supported

Action Name Description Support
35

36 Appendix A: Supported ActionScript

APPENDIX B
Supported Properties
This appendix lists the Flash Lite ActionScript properties and whether there are any exceptions in
the Flash List for i-mode.

Properties Description Support

/ Property; specifies or returns a reference
to the root movie Timeline. Functionality
provided by this property is similar to that
provided by the _root property in Flash 5.

Fully supported

: Used in conjunction with "/" to reference
variables and properties of other movie
clips that are contained in the current
movie. It is also used with the “Call” action
to reference a frame label of a movie clip.

Fully supported

_alpha Property; sets or retrieves the alpha
transparency (value) of the movie clip.
Valid values are 0 (fully transparent) to
100 (fully opaque).

Fully supported

_currentframe Property (read-only); returns the number
of the frame where the playhead is
currently located in the Timeline.

Fully supported

_droptarget Property (read-only); returns the absolute
path in slash syntax notation of the movie
clip instance on which the
draggableInstanceName (the name of a
movie clip instance that was the target of
a startDrag action) was dropped. This
property always returns a path that starts
with /.

Not supported

_focusrect Property (global); specifies whether a
yellow rectangle appears around the
button that has the current focus. The
default value true (nonzero) displays a
yellow rectangle around the currently
focused button or text field as the user
presses the Tab key to navigate.

Fully supported
37

_framesloaded Property (read-only); the number of
frames that have been loaded from a
streaming movie. This property is useful
for determining whether the contents of a
specific frame, and all the frames before
it, have loaded and are available locally in
a user’s browser.

Fully supported

_height Property (read-only); retrieves the height
of the space occupied by a movie’s
content.
In Flash Lite, _height is a read-only
property.

Fully supported

_highquality Property (global); specifies the level of
anti-aliasing applied to the current movie.
This property can be used to control
bitmap smoothing as well.

Partially supported (Bitmap
smoothing not supported)

_level In Flash Lite, movies are assigned a
number according to the order in which
they were loaded. The movie that was
loaded first is loaded at the bottom level,
level 0. The movie in level 0 sets the
frame rate, background color, and frame
size for all subsequently loaded movies.
Movies are then stacked in higher
numbered levels above the movie in level
0.
This property is a reference to the root
movie Timeline of levelN.

Fully supported

Maxscroll Property; a read-only property that works
with the scroll property to control the
display of information in a text field. This
property can be retrieved, but not
modified.

Not supported

_name Property; specifies the movie clip
instance name.

Fully supported

_rotation Property; specifies the rotation of the
movie clip in degrees.

Fully supported

Scroll Controls the display of information in a
text field associated with a variable. The
scroll property defines where the text
field begins displaying content. After you
set it, Flash Lite updates it as the user
scrolls through the text field. The scroll
property is useful for directing users to a
specific paragraph in a long passage, or
creating scrolling text fields.

Not supported

Properties Description Support
38 Appendix B: Supported Properties

_soundbuftime Property (global); establishes the number
of seconds of streaming sound to
prebuffer.

Not supported

_target Property (read-only); returns the target
path of the movie clip instance specified
as argument.

Fully supported

_totalframes Property (read-only); evaluates the movie
clip specified as argument and returns the
total number of frames in the movie.

Fully supported

_url Property (read only); retrieves the URL of
the SWF file from which the movie clip
was downloaded.

Not supported

_visible Property; determines whether the
specified movie clip is visible. Movie clips
that are not visible (property set to false)
are disabled.

Fully supported

_width Property (read-only); retrieves the width
of the space occupied by a movie’s
content. In Flash Lite, _width is a read-
only property.

Fully supported

_x Property; sets the x coordinate of movie
relative to the local coordinates of the
parent movie clip.

Fully supported

_xscale Property; determines the horizontal scale
(percentage) of the movie clip as applied
from the registration point of the movie
clip.

Fully supported

_y Property; sets the y coordinate of movie
relative to the local coordinates of the
parent movie clip.

Fully supported

_yscale Property; sets the vertical scale
(percentage) of the movie clip as applied
from the registration point of the movie
clip.

Fully supported

Properties Description Support
39

40 Appendix B: Supported Properties

APPENDIX C
Warning and Error Messages
This appendix lists the possible information, warning, and error messages you might encounter
when creating movies for Flash Lite for i-mode.

Message Identifier Message Explanation

SWFS016 Detected loadMovie() -
will be ignored.

The Flash player detected that the SWF
movie contains a loadMovie() ActionScript
command, which the specified device’s Flash
Lite does not support. No modifications are
made to the device-specific SWF file - this is
just a warning.

SWFS017 Detected loadVariables()
– will be ignored.

The Flash player detected that the SWF
movie contains a loadVariables()
ActionScript command, which the specified
device’s Flash Lite does not support. No
modifications are made to the device-specific
SWF file – this is just a warning.

SWFS018 Detected getURL() -
restrictions may apply.

The Flash player detected that the SWF
movie contains a getURL() ActionScript
command, which has some run-time
restrictions when played by the specified
device’s Flash Lite. No modifications are made
to the device-specific SWF file – this is just a
warning.

SWFS019 startDrag() action not
supported.

The Flash player detected that the SWF
movie contains a startDrag() ActionScript
command, which Flash Lite does not support.
No modifications are made to the device-
specific SWF file – this is just a warning.

SWFS020 stopDrag() action not
supported.

The Flash player detected that the SWF
movie contains a stopDrag() ActionScript
command, which Flash Lite does not support.
No modifications are made to the device-
specific SWF file – this is just a warning.
41

SWFS021 _droptarget property not
supported.

The Flash player detected that the SWF
movie contains a getProperty() or
setProperty() ActionScript command
referring to the _droptarget property, which
Flash Lite does not support. No modifications
are made to the device-specific SWF file – this
is just a warning.

SWFS023 _soundbuftime property
not supported.

The Flash player detected that the SWF
movie contains a getProperty() or
setProperty() ActionScript command
referring to the _soundbuftime property, which
Flash Lite does not support. No modifications
are made to the device-specific SWF file – this
is just a warning.

SWFS024 scroll property not
supported.

The Flash player detected that the SWF
movie contains an ActionScript reference to
the scroll property, which Flash Lite does not
support. No modifications are made to the
device-specific SWF file – this is just a
warning.

SWFS025 maxscroll property not
supported.

The Flash player detected that the SWF
movie contains an ActionScript reference to
the maxscroll property, which Flash Lite does
not support. No modifications are made to the
device-specific SWF file – this is just a
warning.

SWFS027 File saved as <filename> The Flash player displays this message to
indicate the name it is using for the device-
specific SWF file.

SWFS028 File size after
substitution: <nnn>
kilobytes

The Flash player displays this message to
indicate the size of the device-specific SWF
file after substitution or removal of sounds.
This is an informational message only.

SWFS032 Detected fscommand() -
will be ignored.

The Flash player detected that the SWF
movie contains a fscomamnd() ActionScript
command, which Flash Lite for i-mode does
not support. No modifications are made to the
device-specific SWF file – this is just a
warning.

SWFS033 Not enough memory to
perform operation.

The Flash player was unable to get enough
memory to finish the operation

SWFS034 Input Text Fields not
supported.

The Flash player detected that the SWF
movie contains an input text field, which is not
supported by -this is just a warning

Message Identifier Message Explanation
42 Appendix C: Warning and Error Messages

 SWFS035 _url property not
supported.

The Flash player detected that the SWF
movie contains a getProperty or setProperty
Actionscript command referring to the _url
property, which is not supported by Flash Lite.
No modifications will be made to the device
specific SWF file - this is just a warning

 SWFS036 Detected loadMovie -
restrictions may apply.

The Flash player detected that the SWF
movie contains a loadMovie ActionScript
command, which has some runtime estrictions
when played by the specified device’s Flash
Player. No modifications will be made to the
device-specific SWF file - this is just a
warning.

SWFS037 Detected loadVariables -
restrictions may apply.

The Flash player detected that the SWF
movie contains a loadVariables ActionScript
command, which has some runtime
restrictions when played by the specified
device’s Flash Player. No modifications will be
made to the device-specific SWF file - this is
just a warning.

SWFS038 Detected FSCommand -
restrictions may apply.

The Flash player detected that the SWF
movie contains a FSCommand ActionScript
command, which has some runtime
restrictions when played by the specified
device’s Flash Player. No modifications will be
made to the device-specific SWF file - this is
just a warning.

SWFS039 Detected getURL - will
be ignored.

The Flash player detected that the SWF
movie contains a getURL ActionScript
command, which is not supported by the
specified device’s Flash Player. No
modifications will be made to the device
specific SWF file - this is just a warning.

SWFS040 UnCompressed Sound
found.

The Flash player detected that the SWF
movie contains uncompressed sound. which is
not supported by the specified device’s Flash
Player. No modifications will be made to the
device-specific SWF file - this is just a
warning.

SWFS041 ADPCM Sound found. The Flash player detected that the SWF
movie contains ADPCM sound. which is not
supported by the specified device’s Flash
Player. No modifications will be made to the
device-specific SWF file - this is just a
warning.

Message Identifier Message Explanation
43

SWFS042 Nellymoser Sound
found.

The Flash player detected that the SWF
movie contains Nellymoser sound, which is not
supported by the specified device’s Flash
Player. No modifications will be made to the
device-specific SWF file - this is just a
warning

SWFS043 MP3 Sound found. The Flash player detected that the SWF
movie contains MP3 sound, which is not
supported by the specified device’s Flash
Player. No modifications will be made to the
device-specific SWF file - this is just a
warning

SWFS044 Export tag <subst:sound
file name> was found and
ignored, Please use the
Device sound feature.

The Flash player detected that the SWF
movie contains a <subst:file name> export tag
used in old Flash 6 updater, which is not
supported by the Flash Lite 1.0 test movie
player. The author shoud use the new Device
Sound feature. No modifications will be made
to the device-specific SWF file - this is just a
warning

SWFS045 MIDI Sound found. The Flash player detected that the SWF
movie contains MIDI sound, which is
supported by Flash Lite.

SWFS046 MFi Sound with
<manufacturer> extension
found.

The Flash player detected that the SWF
movie contains MFi sound with certain
manufacturer extension, which is supported by
Flash Lite.

SWFS047 Unsupported device
sound format found.

The Flash player detected that the SWF
movie contains unsupported sound format,
which is not supported by Flash Lite.
No modifications will be made to the device-
specific SWF file - this is just a warning

FTPE001 the key will not be
processed: <key>
keycode: <nnn>

While testing the movie, a key was pressed
that Flash Lite for i-mode does not support –
the keypress is ignored.

FTPA002 fscommand() is ignored. While testing the movie, a fscommand()
ActionScript command was encountered.
Flash Lite for i-mode does not support this
command and ignores it.

FTPA003 loadVariables() is
ignored.

While testing the movie, a loadVariables()
ActionScript command was encountered.
Flash Lite for i-mode does not support this
command and ignores it.

FTPA004 loadMovie() is ignored. While testing the movie, a loadMovie()
ActionScript command was encountered.
Flash Lite for i-mode does not support this
command and ignores it.

Message Identifier Message Explanation
44 Appendix C: Warning and Error Messages

FTPA005 The call to getURL() for
<URL> was ignored
because there was more
than one request per
keypress.

While testing the movie, multiple ActionScript
getURL() commands were called during a
keypress event. Flash Lite for i-mode only
allows one getURL() command per keypress,
so only the first command is processed – the
others are ignored.

FTPA006 The call to getURL() for
<URL> was ignored
because it was not
associated with a
keypress.

While testing the movie, a getURL()
ActionScript command was encountered
outside of a keypress event. Flash Lite for i-
mode only allows getURL() commands to be
handled during a keypress event. Calls to
getURL() outside of a keypress event are
ignored.

FTPA007 getProperty or
setProperty not
supported for: <property
name>

While testing the movie, a getProperty() or
setProperty() ActionScript command was
encountered for a property that the specified
device’s Flash player does not support. The
command is ignored.

FTPA008 getProperty or
setProperty not fully
supported for: <property
name>

While testing the movie, a getProperty() or
setProperty() ActionScript command was
encountered for a property that Flash Lite for i-
mode does not completely support. The
command is performed, but the results might
not be as expected.

FTPA009 startDrag() and
stopDrag() are not
supported.

While testing the movie, a startDrag() or
stopDrag() ActionScript command was
encountered. Flash Lite does not support
these commands and ignores them.

FTPS011 Only a single sound can
be played at a time (no
mixing).

While testing the movie, a sound was started
while another sound was already playing.
Flash Lite does not support sound mixing, so
the first sound is stopped to allow the second
sound to play.

FTPS012 Event sound was ignored
because it was not
associated with a
keypress.

While testing the movie, an event sound was
encountered outside of a keypress event.
Flash Lite for i-mode only allows event sounds
to be handled during keypress events. Event
sounds outside of a keypress event are
ignored.

FTPS013 Text fields are not
selectable.

While testing the movie, an attempt was made
to select a text field. Flash Lite for i-mode does
not support Input text fields – they are
rendered as non-selectable text fields.

FTPS022 ADPCM sounds not
supported.

While testing the movie, an ADPCM sound
was encountered. The specified device’s Flash
Player does not support ADPCM sound
format.

Message Identifier Message Explanation
45

FTPS023 MP3 sounds not
supported.

While testing the movie, an MP3 sound was
encountered. The specified device’s Flash
Player does not support MP3 sound format.

FTPS024 MIDI/MFI sounds not
supported.

While testing the movie, an MIDI/MFI sound
was encountered. The specified device’s Flash
Player does not support MIDI/MFI sound
format.

FTPS025 PCM sounds not
supported.

While testing the movie, an PCM sound was
encountered. The specified device’s Flash
Player does not support PCM sound format.

FTPS026 Debug movie is not
supported in the
specified test movie
player

While the Flash Lite player is specfied in the
publish settings, an attempt was made to
debug the movie using Flash Lite 1.0 test
movie player which is not supported.

Message Identifier Message Explanation
46 Appendix C: Warning and Error Messages

APPENDIX D
References
The following websites contain further information about creating content for Flash Lite and
Flash Lite for i-mode:

Macromedia websites

Information and resources for developing content for Flash Lite and Flash Lite for i-mode is
available at several Macromedia websites.

• Macromedia Flash MX Professional 2004 Designer and Developer website:
http://www.macromedia.com/go/devnet

NTT DoCoMo websites

Information on i-mode, i-mode compatible HTML, the i-mode HTML Simulator, 505i
hardware characteristics, and Emoji is available at several NTT DoCoMo websites.

• NTT DoCoMo home page:
http://www.nttdocomo.co.jp/

• i-mode general website:
http://www.nttdocomo.co.jp/p_s/imode/

• Emoji application download website:
http://www.nttdocomo.co.jp/p_s/imode/tag/emoji/

• Flash List for i-mode and i-mode HTML Simulator website:
http://www.nttdocomo.co.jp/p_s/imode/flash/

• 505i hardware characteristics website:
http://www.nttdocomo.co.jp/p_s/imode/spec/
47

48 Appendix D: References

	Contents
	Introduction
	Developing Content
	Text and fonts
	Emoji
	Sound
	Animation
	Using bitmaps
	Bitmaps versus vectors
	Vector graphics
	Using ActionScript

	Sound
	Associating an MFi sound file with an ActionScript sound symbol
	Accessing sound on main and movie clip Timelines

	Testing Content
	Supported ActionScript
	Supported Properties
	Warning and Error Messages
	References
	NTT DoCoMo websites

